뇌영상11 뇌영상 데이터 분석 - Create Brain Mask MATLAB을 이용하여 뇌영상 데이터를 분석하다 보면, 뇌영역에 해당되는 부분의 마스크Mask를 만들어야 하는 경우가 있습니다. 이러한 경우에는 뇌영상 데이터 분석 - Matlab Index scheme 강의에서 처럼 MATLAB의 index 기능을 이용하면 회색질, 백색질, 뇌척수액 등에 해당되는 뇌 영역을 indices 값을 얻을 수 있고, 각각의 인덱스 값의 합집합을 이용하면 전체 뇌영역에 해당되는 마스크Mask를 얻을 수 있습니다.위에 그림은 회색질(Grey Matter, GM), 백질(White Matter, WM), 뇌척수액(Cerebro-spinal Fluid, CSF)의 3차원 공간에서의 확률 분포를 보여주고 있습니다. 각각의 영상은 SPM (Statistical Parametric Map.. 2015. 7. 10. 뇌영상 데이터 분석 - Matlab Index scheme 매틀랩으로 데이터 분석을 하다보면 find() 명령어를 통해서 특정 index를 찾고, 해당되는 index 값에 대해서만 여러 연산을 수행하는 과정이 필요합니다. 매틀랩에서 행렬을 생성하게 되면 아래의 그림과 같이 Subscript space에서는 A(1,1) 또는 A(1,2) 등의 과정을 통해서 행렬의 각 요소에 있는 값을 얻어올 수 있습니다. 하지만, Subscript space에서 Index space로 변환을 하게 되면 A(1,1)은 A(1)로 접근이 가능하고, A(1,2)는 A(11)을 통해서도 행렬의 값을 얻을 수 있습니다. 가령 아래와 같은 10x20의 행렬 A를 생각해 보겠습니다. 숫자는 행렬의 index를 의미하는 것이고 색깔은 행렬 요소의 값을 의미합니다. 파란색은 0이고 빨간색은 1을.. 2015. 6. 25. Contrasts in Neuroimaging Data Anlaysis SPM 등의 뇌영상 데이터 분석 툴을 이용한 뇌영상 데이터의 분석은 기본적으로 각 복셀의 영상에 할당된 데이터 값을 일반 선형 모델 (General Linear Model, GLM)을 이용하여 모델링하고, 실제 데이터와 모델이 얼마나 잘 맞는지 통계적으로 테스트 하는 것이다. 특정 복셀 $i$에 대해서 $Y_{i} = XB_i + E_i$로 모델링 했을때 $X$는 디자인 행렬이되고, 벡터 $B_i$는 분석을 통해서 추정되는 파라미터이며, $E_i$는 에러를 의미한다. 이때 contrast는 $c'B$를 통해서 계산된다. 뇌영상 데이터에서 $c$는 보통 행벡터(column vector)를 의미하고, $c$를 통해서 다양한 contrasts로 결과를 확인할 수 있다. 벡터 $c$는 contrasts의 가중치.. 2015. 3. 15. Slice Timing Correction 하나의 3차원 뇌영상 데이터는 여러개의 단면영상(Slice Image)으로 구성되어 있다. 기능자기공명영상(functional magnetic resonance imaging, fMRI)의 경우에는 보통 매2초마다 하나의 3차원 볼륨 영상을 획득하게 된다. 다시 말해서 2초동안 여러개의 단면영상을 획득하게 되는데, 그중에서 제일 처음에 획득한 단면영상과 맨 마지막에 획득한 단면영상 간에는 최고 2초 정도의 시간 차이가 발생하게 된다. 이러한 시간 차이를 보정해 주는 것이 Slice timing correction이라 물리는 전처리 과정이다. SPM의 경우에 slice timing correction 을 적용하게 되면 'a'를 어두로 하는 새로운 뇌영상 파일이 생성된다. 단면영상의 순서(slice orde.. 2015. 2. 12. smoothness estimation in SPM and AFNI Smoothness estimation은 MonteCarlo simulation을 위해서 반드시 필요한 과정입니다. SPM으로 영상 데이터를 분석했다면, SPM.mat 파일의 Field 값을 확인함으로써 smoothness를 확인할 수 있습니다. >>load SPM; % SPM 결과 파일이 저장된 폴더에서 실행 >>M = SPM.xVol.M; % 변환행렬 정보를 가져옴 >>VOX = abs(diag(M)); % 대각행렬 정보가 볼셀 사이즈 >>FWHM = SPM.xVol.FWHM; % FWHM in voxel unit >>FWHMmm = FWHM.*VOX(1:3)'; % FWHM in mm unit >>disp(FWHMmm); SPM에서 Gaussian random field theory를 기반으로 sm.. 2015. 1. 23. Voxel size determination through the MonteCarlo Simulation in AFNI 뇌영상을 이용한 뇌과학 연구는 대부분 다음과 같은 질문에 답하는 것이다.3차원의 뇌에 어떤 영역이 활성화 되었는지? 특정 영역의 시계열 데이터와 상관성이 높게 나오는 뇌영역은 어디인지? 생물정보학에서 다루는 Microarray 데이터도 마찬가지 이지만, 뇌영상 데이터도 multiple comparison에서 발생하는 false positive를 조절하는 방법에 대해서다양한 해법들이 있다. 가령, false discovery rate (FDR) 또는 family-wire error rate (FWE) 등이 전통적으로 가장 많이 이용되어 왔던 multiple comparison correction 방법들이다. 뇌영상 데이터는 특정 복셀에서 통계적으로 유의미한 차이를 보인다고 했을때 "아, 이 볼셀에서 통계적.. 2015. 1. 7. 이전 1 2 다음 728x90